
Journal of Global Optimization 5: 277-290, 1994. 277
(~) 1994 KIuwer Academic Publishers. Printed in the Netherlands.

An Ordering (Enumerative) Algorithm for Nonlinear
O- 1 Programming

BI~LA VIZVARI 1 and FATIH YILMAZ 2
1Department of lndustrial Engineering, Bilkent University, Ankara; current address: Rudgers
University RUTCOR, P.O. Box 5062, NJ08903-5062, U.S.A., vizvari@rutcor.rutgers.edu; 2Dept. of
Industrial Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey, yilmaz@trbilun.bitnet

(Received: 12 July 1993; accepted: 11 February 1994)

Abstract. In this paper, a new algorithm to solve a general 0-1 programming problem with linear
objective function is developed. Computational experiences are carded out on problems where the
constraints are inequalities on polynomials. The solution of the original problem is equivalent with
the solution of a sequence of set packing problems with special constraint sets. The solution of these
set packing problems is equivalent with the ordering of the binary vectors according to their objective
function value. An algorithm is developed to generate this order in a dynamic way. The main tool of
the algorithm is a tree which represents the desired order of the generated binary vectors. The method
can be applied to the multi-knapsack type nonlinear 0-1 programming problem. Large problems of
this type up to 500 variables have been solved.

Key words: Nonlinear integer programming, enumeration, lexicographic order, global optimum.

1. In troduct ion

The general 0-1 programming problem with linear objective function can be stated as:
max cx

x E S C_ {0, 1} ~ (GBP)

where c 6 N~_ and without loss of generality it is assumed in the whole paper that

cl _> c2 _> . . . ___c~ > 0. (1)

It is well-known that (GBP) is a hard problem to solve if S has no special properties.
A new algorithm to solve (GBP) is presented in this paper. The algorithm is tested
on problems where the set S is defined with polynomial inequalities. Experiences
show that the method is competitive, i.e. problems have been solved with at least
the same size as those reported in [1] and [5]. The method can be applied to the
multi-knapsack type nonlinear 0-1 programming problem which is the following

p

maxZ II xj
i=i j6Si

~ (MKTNL)
Z a i k 1--[x j < bi i = 1 , . . . , m
k=l j6Sik

xj 6 { 0 , 1 } j = l , . . . , n ,

278 BI~LA VIZV,g.RI AND FATIH YILMAZ

where it is assumed that all coefficients are positive and &, &k C_ {1, ..., n}. Large
problems of this type have been solved exactly by the method described in Section
4. [5] has collected a lot of applications of nonlinear 0-1 programming. In many
cases the underlying mathematical problem is (GBP). In some applications, e.g.,
in testing vision loss discussed in [6], this problem is (MKTNL).

The new method is an enumerative algorithm. Enumeration is a well-known
technique to solve NP-hard problems. This type of algorithm can be found, e.g., in
[2], [4], [7], [12], [14], [15] and [16].

The organization of the paper is as follows. Section 2 describes a solution
scheme, which was applied earlier in several papers. A basic observation is pre-
sented in the same section. The tree representation of the ordering of binary vectors,
which is the main algorithmic tool, is discussed in Section 3. The application of the
algorithm to the multi-knapsack type nonlinear 0-1 programming problem can be
found in Section 5. Finally the last section discusses the computation experiences.

2. Solution of GBP via a Sequence of Set Packing Problems

In [4] and [7], the following scheme is applied to solve Problem (GBP).
If e E S, then it is optimal where e is the all 1 vector. If e ~ S, then the optimal

solution of (GBP), if it exists, must satisfy the following inequality

T~

~ x j < _ n - 1 .
j = l

Let us consider the following problem :

z2 = max cx
n ~q=l xj <- n - 1

{o, 1}
(2)

and assume that optimal solution of (2) is/32. It can be seen that

1 if j e { 1 , . . . , n - 1 }
f l 2 j= 0 if j = n .

Then, it is obvious that if/32 E S, so it is an optimal solution of (GBP). Now
assume that/32 g S, it follows that the optimal solution of original problem must
satisfy

n

y ~ x j ~ n - 1
j=l

32x <_ fl2 e - 1

x E {0,1} ~ .

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING 279

If we continue this procedure, the following generalization is obtained.
Let/31 = e, fiE, ..., rik (2 _< k < 2 n) be the vectors generated so far and none

of them was feasible in (GBP). Then the following set packing problem

Zk+l = max cx

x E Pk = {x E {0, l} n : ritx <_ rite - - 1, I = 1, ..., k} (SPP)

is solved in the next iteration and its optimal solution is denoted by rik+l.

LEMMA 1. Assume that riI , ..., rik q[S. Then S C_ Pk.
Proof Let us assume that y E S, y ~ {flI, ..., ilk}, but y f[Pk. Consider the

following index r such that

r = min{l " ritY > r i t e - l ; l < I < k } .

It is obvious that r > 2. Otherwise, r = 1, y = r i l . It follows that

i.e.,

rirY = fire

y > r i ~ and yss

Hence, it follows from (1) that

cy > crir.

This is a contradiction to optimal property of rir, because y E P r - 1. []

Thus (SPP) is a relaxation of (GBP).

THEOREM 1. Let k be the minimal index of iterations, such that rik+l E S. Then
it is optimal to (GBP).

Proof It follows from the previous lemma. []

A similar model is given in [8] for the matrix equipartition problem, but in that
case it is possible to exclude not only the current optimal solution.

Let L be any list of all binary vectors. If the objective function values of the
vectors form a decreasing order in L then the first vector of L which is feasible in
(GBP), is an optimal solution.

It was Boros [3] who made the following observation. As it is stated in Lemma
1, the constraint set of the current set packing problem excludes only the points,
generated so far. Therefore the optimal solution of the next set packing problem is
the binary vector having the greatest objective function value among those being
not generated so far. Thus the algorithm discussed above generates the first part of
such a list L up to the first feasible solution.

280 BI~LA VIZVARI AND FATIH YILMAZ

3. The Tree Representation of the Ordering of the Binary Vectors

In this section a method is provided to arrange the binary vectors in such a way
that the values of the linear form cx are in a decreasing order. The method is based
on two well-known notions which are successor of a binary vector and search tree.
The first one is used, e.g., in [9] in two algorithms to generate all k subsets of a
set of n element. In the algorithm of this paper a similar subproblem occours, but
the algorithms of [9] cannot be used here because of the special requirement that
the enumeration must be done in a decreasing order of the value of the objective
function. Search trees are discussed in [13]. [13] defines four operations on search
trees which are the followings: insertion and deletion of an object and to join two
trees and to split one tree into two trees. Here only insertion and a special kind
of deletion are needed. [13] does not provide a pseudo-code of the algorithm.
Therefore all details of the method are discussed here.

First, the following subproblem is solved, in which exactly k components of
the vectors x have the value 1, i.e.

n

Z Xj --'-- k~
j = l

(3)

are ordered. Let u and v be two binary vectors satisfying (3). Let {il, i2, ..., ik}
and {jl, J2,..., Jk}, resp., the set of indices of the l ' s in the vector u and v, resp. It
follows immediately from (1) that if

i p < j p , p = l , . . . , k (4)

then cu > cv.

DEFINITION 1. Let {il, ..., ik} be the set of indices of l 's in the binary vector u.
Assume that for some index p the inequality

ip -t- 1 < ip+ l

holds, where ik+l = n + 1. Let u' be the vector defined by

uj if j ~= ip, ip + 1
= o i f j =

1 i f j = i p + l

Then u' is an immediate successor of u.

�9 !

It is obvious from previous remarks, that if u is an immediate successor of u, then
!

cu > cu . Equality holds if cip = e/p+1. One vector can have several immediate
successors�9

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING 281

THEOREM 2. Let { i l , ..., ik} and {Jl, ..., jk}, resp., be the sets o f indices o f the
1 's in the binary vectors u and v, resp. Assume that (4) holds. Then there is a
sequence o f binary vectors

U -~- WO, W l , . . . , W t ~-- V (5)

such that wt is an immediate successor o f wl-1 (l = 1, ..., t).
Proof Assume that u ~ v, otherwise t = 0 and the statement holds. Let

p = m a x { q : iq < jq}.

Hence Uipq- 1 ~--- 0, o t h e r w i s e

ip + l = ip+ l <_ jp < Jp+ l

and this contradicts the maximal property of p. Let

woj i f j r i p + l
wlj = 0 if j = ip

1 if j = i p + l

Then the set of the indices of l ' s in Wl is

{i11, ... ,ilk} = { i l , . . . , i p - l , i p + 1,..., ik}.

It is obvious that

ill <_ Jl, l = 1,..., k.

Then either w 1 : - V, or the process can be repeated for wl []

It is trivial that all of the binary vectors containing exactly k l 's are the successors
of the vector x, where Xl xk = 1, Xk+l Xn = 0. Therefore all of
these vectors can be enumerated with the following algorithm, where L is the list
of binary vectors to be enumerated and the vector ej is the j- th unit vector.

1. Begin
k

2. L : : {~'-~-j--1 e j -~

3. w h i l e L ~ 0 do
4. b e g i n
5. choose u E L;
6. L : = (L U { v :
7. end ;
8. e n d

Algorithm 1

(1,..., 1,0, ,0)};

v is an i m m e d i a t e successor o f u}) \{u};

282 BELA VIZViLRI AND FATIH Y1LMAZ

Without any deeper organization this algorithm will work unnecessarily too
much, because the sequence (5) is not unique, i.e., a binary vector can be generated
several times as the immediate successor of different vectors. This phenomena is
illustrated with the following example. Let k = 2, n = 4. Then Algorithm 1
starts from the point x = (1, 1,0, 0). In the first iteration it has only one immediate
successor, which is ul --- (1,0, 1, 0). The immediate successors of Ul are u2 =
(0, 1, 1,0), and u3 = (1,0,0, 1). The only immediate successor of ua is u4 =
(0, 1,0, 1) which is at the same time the immediate successor of u3, too. Thus L
contains u3 and Iz4 after generating the successors of u2. If in this situation z~ 4 is
selected in the next iteration in Row 5, then it leaves L, but it will return as the
successor of u3, i.e., one vector may be enumerated several times. To avoid this
disadvantageous effect the following ordering of binary vectors is introduced.

DEFINITION 2. The vector u is 'greater' than v, denoted u t> v if either
- - e ~ ~ cv or

- cu = cv and u is lexicographically greater than v which is denoted by
u ~ v .

It is obvious that any two distinct vectors are comparable by this ordering, i.e. in
any set of binary vectors there is a unique maximal element in this ordering. Thus
the selection of the vector u in the 5-th row of Algorithm 1 can be executed in the
following way

5' u : = max t > { v E L } .

In Row 6 the operation U is the well-known set operation. This means that
if a vector v is in L and at the same time among the successors of u, then after
executing this command it will have only one copy in L. This is arranged in Rows
22-26 of Algorithm 3 (see below).

It follows from (1), that if u ~ is an immediate successor of u, then u t> u ~. Hence
the following statement is obtained.

LEMMA 2. I f in Algorithm I the selection o f the vector u is done according to 5',

then no vector can be selected twice.

Proof. Assume that the vector u was selected in iteration t. Then it was the
maximal vector in ordering I> which was contained in L and it was substituted
by a set of smaller vectors. If it returned to L then at least one vector had to be
substituted by a greater vector, which is impossible. []

Hence the following algorithm is obtained to enumerate all of the binary vectors.

Algorithm 2

1. B e g i n
k 2. L : = { E j = I ej : k = 1 , . . . , n } ;

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING 283

3. w h i l e L r 0 do
4. b e g i n
5. u := max t> {v E L};
6. L : = (L U { v : v is an immediate successor o f u}) \{u};
7. end ;
8. e n d

THEOREM 3. All of the binary vectors are selected in row 5 of Algorithm 2 exactly
once.

Proof It follows from Lemma 2 that it is enough to prove that all of the points
are selected at least once. Assume that the vector v containing exactly k l ' s is not
chosen. Let us consider a sequence (5) from the point ~ j = l ej to v. Without loss
of generality we may assume that in this sequence only v was not chosen. Then
wt = v is an immediate successor of wt-1, which was selected in an iteration.
When in row 5 u was wt-1, wt entered to L according to Row 6. If v is in L
and v has been never selected then L has become never empty. Thus it follows
from Lemma 2 that it should be infinite many binary vectors being greater in the
ordering !> than v, which is a contradiction. []

For the sake of convenient handling of the list L, it is organized as a rooted tree.
The root contains always the greatest point. All of the nodes of the tree, except the
root, can have two children, a left and a right one. The root has only a left child. All
of the binary vectors of the left (right) subtree of a node v are less (greater) than that
of v according to the relation t>. Thus it is very easy to find the appropriate position
of a newly generated binary vector in the tree. This is done by the Algorithm 3.

Algorithm 3

1. b e g i n
.

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

(* Let L be the current tree ,)
(* S := Set o f all immediate
x := Binary vector in the root;
w h i l e S r 0 do
b e g i n

y E S ;
z :--- cy;
p := root^. lef t;
f : - true;
w h i l e p r nil a n d f do
b e g i n

Temp := p;
i f z > pA.obfv
t h e n p :--- p^.rightnode
else i f z < p^.obfv

successor o f x ,)

284 BELA VIZV,&RI AND FATIH YILMAZ

17. t h e n p := pA.leftnode

18. e lse if y ~- pA.BVector;
19. t h e n p := ph.rightnode;
20. e lse if pA.BVector ~- y
21. t h e n pA.leftnode

22. e lse

23. b e g i n

24. f :---- false;
25. S := S - {y};

26. end ;

27. e n d ;

28. if f

29. t h e n

30. beg in ;

31. S := S - y;

32. i f z > TempA.obfv
33. t h e n TempA.rightnode := y

34. e lse TempA.leftnode := y

35. end ;

36. end ;

In Row 6 of Algorithm 2, the point contained in the root is omitted from the
tree. Therefore a method is needed to find the point, which must go into the root,
i.e., the maximal binary vector in the tree. But, notice that this is always the most
right point of the (left) subtree of the root.

Algorithm 3 needs O (log(n ~jn=l ej)) operations. But in the practice it works
far better. This order can be reached only if c~ = 1 and

n

V j (l < j < n) : c j < ~ ct + 1.
/= j+ l

Example. Assume that n = 6, c = (7, 5, 4, 3, 2, 1) and the current tree Lk consists
of the following binary vectors

xk = (1, 0,1, 0,1, 0), yl = (1, 0,1, 0, 0, 0), y 2 = (1 , 1 , 0 , 0 , 0 , 0) ,

Y 3 = (0 , 1 , 0 , 1 , 1 , 0) , Y4 = (1, 0, 0, 0, 0, 0)

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING

and the tree representation is X I~

The immediate successors of xk are

u = (0 , 1 , 1 , 0 , 1 , 0) , v = (1 ,0 ,1 ,0 ,0 ,1) , w----(1,0,0,1,1,0) .

Then the tree becomes ~r162

Y,

\
\

I ,V '

The point Y2 goes Lmo the root and the shape of tree is as follows

285

V

2 8 6 BI~LA VIZVARI AND FATIH YILMAZ

4. The Multi-Knapsack Type Nonlinear Problem

In this section the algorithm is applied to the multi-knapsack type nonlinear 0-1
programming problem.

Let us consider the products in the objective function. Let

yi = I] mS i = l , . . . , p . (6)
j6Si

Thus yi 6 {0, 1}(i = 1, ..., n). Equation (6) means that x uniquely determines y,
but it is not true in the opposite direction. If y is given a priori then it is possible
that (i) there is no x, (ii) there is exactly one x, (iii) there are several x's satisfying
(6). Case (i) occurs if and only if there is an index k such that Yk -- 0 and

& c _ [_j &.
i:yi=l

Thus
p

C { P (7) E i = l c i y i l V i " y~ E { 0,1} }.
If Case (i) can occur then equation in (7) is not necessarily true.

Let ~ be a fixed vector. Then it follows from its definition that for any vector x
satisfying (6)

V j 6 U &" xj = 1 (8)
i:~i=1

holds. Then
P P

Z ci y[xj >_ ~_, cifl,. (9)
i=l jES~ i=l

for all vectors x satisfying (8). Among all these vectors & is giving the smallest
value in the objective function with

V j e { 1 , . . . , n } \ U Si" &j = 0. (10)
i:91=l

The same is true for the right-hand sides of the constraints, because their coefficients
are positive, as well. Thus if there is any feasible solution among the vectors
satisfying (8), then 5: is one of them because all of the coefficients are positive.

The algorithm of the previous section is applied in the following way. The
vectors y are enumerated. Relation (7) ensures that no value of the objective
function of Problem (MKTNL) is omitted in this way. For each particular vector

the vector & satisfying (8) and (10) is determined. In this way & is uniquely
determined and

P P

- < YI
i = l i=1 j6Si

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING 287

THEOREM 4. Assume that the vectors y are enumerated in the decreasing order
of the value of the objective function. To each particular ~ a vector & satisfying (8)
and (10) is determined. Then the first feasible Yc is the optimal solution of Problem
(MKTNL).

Proof The proof is based on the following observation. If there is strict inequal-
ity in (9) then the point ~, which satisfies (8) and (10) is infeasible. The strict
inequality implies the existence of an index I such that

Yt = 0 and St C { j " xj = l).

Thus the same vector x appeared at the enumeration of the vector y + et. That
time it has turned to be infeasible. Thus the first feasible x belongs to the greatest
possible value of ~-']~P=I e i Y i . []

5. Computational Experiences

Balas and Mazzola [1] deal with the problem

n

max) f , cj xj
j----l

ni

E aik H xj < bi i = l , . . . , m
k=l j E S i k

Vj: x j e { O , 1}

where Vi, k Sik C {1, ..., n}, Vi : n~ E (1, ..., n}, Vj cj >_ O. It is well-known
that all subsets of binary vectors can be described with the same type of constraints.
Thus the only restriction of generality in the above-mentioned problem is that the
objective function is linear.

The computational experiences provided by [1] include problems with the fol-
lowing parameters:

�9 m = 1 0 ,
�9 n = 3 0 ,
�9 Vi : n~ is drawn from a uniform distribution U[3,T], where T goes from

10 to 60,
�9 Vi, k : [S~k I is drawn from the U[2,6] uniform distribution,
�9 Vi, k : aik is drawn from the U[-5,15] uniform distribution,

Vi " bi is drawn from the U[0.3 n~ ni �9 Ek=l aik, 0.8 E k = l aik] uniform distribu-
tion,

.Vj:
The first

cj is drawn from the U[1,20] uniform distribution.
table contains the computational experiences with that type of prob-

lems, which were obtained on an IBM/AT-486 with 16 Mbyte memory and 33 Mhz
speed. The order of the columns are:

�9 m y

�9 n ~

288

TABLE

m n [S~ [n~ N U N binary vectors CPU
min avg max min avg max

BI~LA VIZV,~RI AND FATIH YILMAZ

I. Experiences with Balas-Mazzola type problems

5 30 u[1,6] U[3,10] 10 0 57 327 899 0.11 1.13 3.57
5 30 u[1,6] u[3,20] 10 0 51 267 705 0.06 0.93 2.96
5 30 u[1,6] U[3,30] 10 0 57 208 690 0.11 0.61 2.31
5 30 u[1,6] U[3,40] 10 0 65 373 1048 0.11 1.90 7.58
5 30 u[1,6] u[3,50] 10 0 61 228 768 0.11 0 .85 1.92
5 30 u[1,6] U[3,60] 10 0 74 324 956 0.17 1.41 2.80
5 40 U[1,6] U[3,10] 10 0 41 665 1561 0.02 4.39 16.48
5 40 U[1,6] u[3,20] 10 0 96 450 1981 0.22 3.49 24.61
5 40 u[1,6] U[3,30] 10 0 86 945 3214 0.17 10.93 61.52
5 40 u[1,6] u[3,40] 12 2 106 1101 2830 0.27 11.32 48.89
5 40 u[1,6] u[3,50] 10 0 201 1234 3038 0.66 10.78 28.84
5 40 U[1,6] U[3,60] 12 2 88 1465 3383 0.17 13.38 36.36
5 60 U[1,6] U[3,10] 12 2 87 1128 2938 0.16 16.58 54.81

10 30 U[1,6] U[3,10] 11 1 158 946 3174 0.44 5.79 20.81
10 30 u[1,6] U[3,20] 11 1 117 415 817 0.27 1.52 3.96
10 30 U[1,6] u[3,30] 10 0 94 853 2729 0.22 5.33 25.27
10 30 u[1,6] u[3,40] 10 0 221 1531 3078 0.66 12.39 28.40
10 30 U[1,6] u[3,50] 11 1 114 830 2609 0.33 5.52 23.18
10 30 U[1,6] u[3,60] 10 0 59 612 1719 0.11 3.54 11.81
10 40 u[1,6] U[3,10] 14 3 614 2048 4646 2.18 20.22 59.81
10 40 U[1,6] u[3,20] 13 3 524 2212 4448 1.98 18.59 46.69
10 40 U[1,6] u[3,30] 13 3 175 1667 4203 0.39 16.47 56.17
10 40 U[1,6] U[3,40] 15 5 683 1900 3393 3.02 18.22 56.30
10 40 u[1,6] U[3,50] 14 4 198 1950 4451 0.66 23.38 69.64

�9 the distribution of[Sia 1,
. the distribution of hi,

�9 N = the number of problems,

�9 UN = the number of problems not solved, because of lack of memory,

�9 the number of the generated binary vectors of the solved problems: mini-

mum, average, maximum,

. CPU times of the solved problems in seconds: minimum, average, maxi-

mum.

In these problems the generation of the a ~ ' s and b~ 's and c j ' s was exactly the same

as that in [1].
The problem generation of [1] differs from that of the problems contained in

Table I, that I S~k I is drawn from the U[2,6] distribution instead of U[1,6]. But this
makes the problems more difficult for the method described by the present paper.
Table II provides evidences for the claim that if the nonlinearity of the problem
increases, i.e. I Sik I increases, than the problem becomes easier for the method

AN ORDERING (ENUMERATIVE) ALGORITHM FOR NONLINEAR 0-1 PROGRAMMING

TABLE II. Experiences with more nonlinear problems

289

m n [S~k [ni N UN binary vectors CPU
min avg max min avg max

10 30 U[6,12] U[3,10] 10 0 189 547 2006 0.38 1.90 10.28
10 40 U[6,12] U[3,10] 11 1 91 517 1272 0.11 2.29 6.97
10 50 U[6,12] U[3,10] 11 1 67 1180 2597 0.06 15.48 64.91
10 60 U[6,12] U[3,10] 11 1 203 830 2230 0.60 7.15 34.33
10 30 U[12,18] U[3,10] 10 0 33 93 247 0.01 0.55 23.18
10 40 U[12,18] U[3,10] 10 0 73 205 683 0.05 0.52 2.46
10 50 U[12,18] U[3,10] 10 0 64 254 1240 0.06 1.47 11.70
10 60 U[12,18] U[3,10] 10 0 77 480 1469 0.06 4.11 17.63

TABLE III. Experiences with nonlinear problems in Sun station

m n p [Sk [ni]S~k [binary vectors CPU
min avg max min avg max

10 80 20 10 U[3,10] U[1,12] 37 390 1152 0.07 1.60 5.93
10 150 20 10 U[3,10] U[1,12] 17 96 215 0.01 0.26 0.84
10 200 30 10 U[3,10] U[1,12] 29 86 434 0.03 1 .15 7.80
10 80 25 10 U[3,10] U[1,12] 68 484 1346 0.62 5.95 21.13
10 150 25 10 U[3,10] U[1,12] 14 91 482 0.03 0.79 5.55
20 150 20 10 U[3,10] U[1,12] 19 52 166 0.02 0.32 1.10
30 250 25 10 U[3,10] U[1,12] 24 45 121 0.03 0.92 1.96
30 250 40 10 U[3,10] U[1,12] 41 476 2244 0.10 6.98 35.85
40 250 30 10 U[3,10] U[1,12] 29 108 466 0.05 1 .35 7.75
40 300 50 10 U[3,30] U[1,12] 39 231 1330 0.05 4.49 34.95
30 250 40 15 U[3,10] U[1,12] 79 562 2012 0.62 7.76 33.27
40 250 30 15 U[3,10] U[1,12] 28 150 625 0.01 1 .91 8.12
40 300 50 10 U[3,30] U[1,12] 49 405 2405 0.08 7.60 43.15
10 500 50 20 U[3,30] U[1,12] 49 324 1112 0.10 6.98 28.17
20 500 50 20 U[3,30] U[1,12] 51 418 1837 0.17 12.07 65.92

of this paper. The explanat ion is the fol lowing. The value o f a p roduc t is zero if

at least one term in the produc t is zero. I f the products are conta in ing m o r e terms,

then one zero value o f a variable makes more products to be zero, and therefore it

is easier to satisfy the inequalities. Not ice that the generat ion o f the aik numbers in
[1J is a symmet r ic , because they are drawn f rom the U[-5,15] distribution, i.e. they
are m o r e l ikely posi t ive than negative. Because o f the same reason the r ight -hand
sides, i.e., the numbers hi, are posi t ive in a lmost all o f the cases.

The feasibil i ty o f the genera ted problems is not guaranteed. I f a p rob lem is
infeasible then the me thod o f this paper enumerates all o f the 2 n binary vectors.
Pract ical ly it means that the p rog ram runs out o f memory .

290 BI~LA VIZV,MRI AND FATIH YILMAZ

[5] reconstructed the results of [1] and tested some other algorithms and provided
new methods. The size of the problems is mostly of 10 constraints and 30 variables.
In some cases the greatest size is 20 constraints and 30 and 50 variables. The number
of terms per constraint was drawn from U[30,40]. Another classes with parameters
50/10/U[50,60] and 30/10/1513,200] have been investigated, too.

Because the key factor is the capacity of the memory and not the speed of
the machine, the further experiences with larger nonlinear problems have been
carried out on Sun stations. The memory of the used Sparc 490 is 64 Mbyte and
the virtual memory is 4 Gbyte. Table III contains the computational experiences
with (MKTNL) problems. In that case the zero vector is always a feasible solution
because the right-hand sides are nonnegative. In the Sun environment all of the
10 problems in each class have been solved. Therefore columns N and UN are
omitted. The number of nonzero coefficients in the objective function is denoted
by p and [Sk [is the number of variables in the products of the objective function.
The CPU time is given in seconds.

References

1. Balas, E. and Mazzola, J. B., (1984) Nonlinear 0-1 Programming: II. Dominance Relations and
Algorithms, Mathematical Programming, 30, 22-45.

2. Beresnev, V.L. (1979), Algorithms for the minimization of polynomials with Boolean variables
(Russian), Problemy Kibernetiki (Moscow) 36, 225-246.

3. Boros, E. (1985), Private communication.
4. Granot, D., Granot, E, and Kallberg, J. (1979), Converting Relaxation for Positive 0-1 Polyno-

mial Programs, Mng. Sci. 25, 264-273.
5. Hansen, P., Jaumard, B., and Mathon, V. (1989), Constrained Nonlinear 0-1 Programming,

RUTCOR Research Report, RRR # 47-89, November 1989 (to appear in ORSA Journal in
Computing).

6. Kolesar, P. (1980), Testing for Vision Loss in Glaucoma Suspects, Management Science, 26,
439-449.

7. Maga, E and Vizv~iti, B. (1986), The Relaxation of a Special Polynomial Zero-One Programming
Problem to set Covering Problem, Alkalmazott Matematikai Lapok 12 41-49.

8. Nicoloso, S. and Nobili, P. (1990), A Set Coveting Formulation of the Matrix Equipartition
Problem, Istituto di Analisi dei Sistemi ed Informatica, R.31 !, November 1990.

9. Nijenhaus, A. and Wilf, H.S. (1975), CombinatoriaIAlgorithms, Academic Press, New York.
10. Pardalos, P.M. and Li, Y. (1993), Integer Programming, in Handbook of Statistics, Vol. 9. (Editor

C.R. Rao), Elsevier, 279-302.
11. Pardalos, P.M., Phillips, A.T. and Rosen, J.B. (1993), Topics in Parallel Computing in Mathe-

matical Programming, Science Press.
12. Schoch, M. and Lyska, W. (1978), Kombinatorische Algorithmen zur LOsung spezieller nichtlin-

earer 0-10ptimierungsaufgaben, Mathematische Operationsforschung und Statistik, Ser. Opti-
mization 9, 9-20.

13. Tarjan, R.E., Data Structures and Network Flows, CBMS-NSF, Regional conference series in
applied mathematics, vol. 44.

14. Vizvtiti, B. (1975), Enumerative Methods in Polynomial 0-1 Programming, (Hungarian), Alka-
Imazott Matematikai Lapok 1, 373-384.

15. Wang, X.D. (1988), An Algorithm for Nonlinear 0-1 Programming and Its Application in
Structural Optimization, J. Num. Method & Comp. Appl. 9, 22-31.

16. Zak, Y.A. (1978), Algorithms for Nonlinear Pseudo-Boolean Programming, Engineering Cyber-
netics 16, 29-40.

